

Contents

- Planning for human space mission health and safety
 - Human
 - System
 - Environment
- Confronting biomedical responses to space flight
 - Physiological response
 - Countermeasures
- Advanced technologies for human support
- The International Space Station as a testbed
- Conclusion

Components of Mission Health & Safety

Human Space Missions

System Human Environment

Physical Examinations

- Types of examinations
 - Selection
 - Retention
 - Pre-flight
 - Post-flight
 - Post-retirement

- **Components of** examinations
 - Physical exam
 - Laboratory analysis
 - Imaging
 - Special studies

Longitudinal Study of Astronaut Health

- Survival
- Mission-specific
- Experiments
- Medical skills

Training

The System is chosen to fulfill a function. This function includes mission objectives and crew protection.

- Life support
- Environmental control
- Radiation shielding
- Medical capability

Underlying research

Fluids management

Materials research

Combustion science (fire suppression)

Gravitational biology (biomass production)

Biological interface

Performance parameters are chosen to optimize system and crew function.

- System performance parameters/limits
- Standard operating procedures
 - Vehicle/habitat operations
 - Maintenance procedures
 - Health risk minimization
 - Work/rest cycles

System design needs to accommodate constraints on available power; mass; and crew size, expertise, and availability.

- Miniaturization
- Autonomy
- Redundancy

Biologically-inspired technologies

- Accessibility
- Ease-of-use
- Emergency procedures

Human factors

Design

External Microgravity

Environment

Convection

Buoyancy

Sedimentation

Earth

Space

Psychosocial Elements

Environment

- Isolation
- Confinement
- Multicultural factors
- Societal issues

Adaptation

Adaptive

Pathological

Neurosensory & Neuromotor

Cardiovascular/ Pulmonary

Endocrine

Musculoskeletal

parallels with aging...

Muscle Fiber Response

Bone Response

Earth

PTH & IGF-I **†** =

Osteoprogenitor
Number &
Bone
Mineralization

Bone Formation & Density

Space

PTH & IGF-I

Osteoprogenitor
Number &
Bone
Mineralization

Red Blood Cell Response,

Plasticity

Purkinje cell

morphology

Rapid changes in function and structure to high or low acceleration forces

Synapses

Ataxia SMS Occular

Development

Molecular Observations.

Mean Values by Age (Cross-Sectional Data)

Thyroxine (T4)

Mean Values by Age (Cross-sectional data, 1991-1998)

Thyroid Stimulating Hormone (TSH)

Mean Values by Age (Cross-sectional data, 1991-1998)

Ratio of Total to HDL Cholesterol

Mean Values by Age (Cross-Sectional Data)

Medical Events

Cardiovascular adaptations

Dry skin, Erythema of face & hands, Excessive wax in ear, Fatigue, Foreign body in eye, Gastrointestinal discomfort, Musculoskeletal

Neurovestibular alterations changes, Nasal congestion/irritation, Psychiatric distress, Sleep disorders, Sleeplessness, Space motion sickness, Superficial injury, Surface burn to

Bone & muscle changes

hands, Glossitis, Headache, Heartburn/ gas, Hematoma, Hemorrhoids, Injury/trauma, Laryngitis, Infection/irritation, Acute

Metabolic/ hormonal shifts respiratory infection,
Arrhythmia, Bruise,
Conjunctivitis, Contact
dermatitis, Contusion of
eyeball, Dental caries

Countermeasures

Mechanism

Receptor Long chain Bone Plasticity adjustment myosin formation

Ataxia Fluid loss (2 L), Muscle fiber Reduction BP control shift & strength 1%/ month decrease

Manifestation

Traditional

- Exercise
- Nutrition
- Fluids
- Pharmacological supplements

Non-traditional

- Artificial gravity
- Intervention at genetic/molecular level

Hierarchy of Medical Technologies

Selfreplicating, self-repairing, autonomous systems

Biomimetics

Telehealth capabilities

Database architectures

Human-machine interfaces
virtual reality enabled by nanotechnology

Computing systems

serial...biological...quantum

Information

Medical Care Trends.

Time and distance = self-sufficiency

- Portability
- Virtual reality
- Haptic "smart" systems
- Biologically-inspired technologies

Informatics

- Biocomputation
- Imaging
- Training and simulation
- Telemedicine

Miniaturization.

Imagers

- X-ray
- MRI
- Ultrasound
- Sensors, effectors, and transmitters
 - Surgical instruments
 - Analyzers

Nanotechnology

Life support

- Sensors and effectors
- Bioregeneration
- "Humans-on-a-chip"
- Biological niches

Medical care

- Diagnostic probes
- Treatment & delivery systems
- "Keyhole" surgery
- Tissue replacement

Human-Machine Interface.

Human-centered systems are an integral part of mission design

Biology / Medicine

Genetic profile of travelers

- Tailored medical preparations
- Individual health maintenance

DNA therapies

- Countermeasures
 - artificial gravity as a medical tool
- Illness risk reduction
- Pre-clinical treatments

The Multipurpose ISS,

Human Support Technology

Today

- Mechanical
- Operatordependent

Technological Evolution & Revolution

Tomorrow

- Adaptive
- Autonomous
- Self-replicating
- Virtual
- Human-centered

Human Space Missions: The Future

Conclusion

 Understand the human and the environment

- Research and understand the Earthspace connection
- Apply technology to challenging environments on Earth

